

Regional ocean modeling in support of hurricane forecast improvements

Matthieu Le Hénaff^{1,2}

Hyun-Sook Kim², Ricardo Domingues^{1,2}, George Halliwell², Gustavo Goni², Francis Bringas², Jun Zhang^{1,2}

(1) Univ.Miami-CIMAS, Miami, FL(2) NOAA-AOML, Miami, FL

UNIVERSITY OF MIAMI

ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

J

Motivation

- Improve hurricane forecast by:
 - 1. Deploying **dedicated ocean observation** platforms
 - 2. Assessing the impacts of ocean observations on hurricane forecasts
- The first component is based on the **deployment of ocean gliders**, which observe the **vertical structure** of the ocean (temperature and salinity) at high frequency
- The second component requires the use of a **coupled ocean-hurricane model**, in which the ocean initial conditions integrate the impacts of ocean observations via **ocean Observing System Experiments**

Impacts of ocean observations on hurricane forecasts: approach

- Coupled HYCOM-HWRF model adapted from operational NOAA EMC HWRF-HYCOM
 Analysis Domain
- HWRF H218 version (3 domains of increasing resolution)
- **HYCOM** ocean component of the coupled model:
 - North Atlantic domain (includes the Caribbean Sea and the Gulf of Mexico)
 - 1/12° horizontal resolution
 - Assimilates ocean observations prior to coupling with HWRF
 - Used to examine various initial ocean conditions for the coupled experiments, depending on the ocean observations assimilated in the ocean model, while keeping the same atmospheric component

Impacts of ocean observations on hurricane forecasts: ocean representation during Hurricane Michael (2018)

- We performed various ocean simulations with the HYCOM model:
 - A simulation forced to represent climatological ocean conditions ("Clim")
 - A simulation in which all available ocean observations (altimetry, SST, in situ float data) are assimilated to make the simulation as close to reality as possible ("All Obs")
 - A free-running simulation, without constrain from data assimilation of observations ("No DA")
- The simulations started on January 1st, 2018 (i.e., before hurricane season)

Impacts of ocean observations on hurricane forecasts: ocean representation during Michael Clim All Obs No D

- The data assimilative *All Obs* simulation represents the ocean features of interest: anticyclonic eddies with high Tropical Cyclone Heat Potential (TCHP), warm surface waters
- The climatological simulation *Clim* has **diffuse Loop Current** without eddies, and very low TCHP inside the Gulf
- The free running *No DA* simulation has a retracted Loop Current but **no warm-core eddies**, and overall lower TCHP and SST than observed

Example of a 5-day coupled simulation of Hurricane Michael (2018)

• Ocean DA leads to higher enthalpy fluxes from the ocean to the atmosphere

Surface enthalpy flux averaged over the 60-66 hour period (left: All Obs, right: No DA)

Observed wind intensities (Best, grey), with simulated ones for the All Obs (red), No DA (blue), Climatology (cyan) cases starting on 6 Oct., 18Z.

- Hurricane tracks close to observed track
- •"All Obs": rapid intensification to Cat. 4
- Unconstrained ("No DA") case and climatological ocean ("Clim") case do not intensify as much (Cat. 1-2)

Hurricane Michael (2018): ensemble statistics

- Wind intensity and central pressure **RMSE** over **4 forecast cycles** (every 6 hrs on 6 Oct. 2018, early stage of the storm):
- "*No DA*": large error (33.6 kts on average, 55.7 kts at landfall)
- "All Obs.": lowest error (22.8 kts on average, 24.5 kts at landfall): assimilating ocean observations leads to an error reduction of 32% on average, 56% at landfall

• "*Add SST*" (magenta, 23.9 kts on average) and "*Add Argo*" (green, 26.6 kts on average) show significant contributions of the respective platforms to error reduction (first Argo, then SST)

Conclusions

• The coupled model HWRF-HYCOM is able to reproduce the rapid intensification of Hurricane Michael (2018)

• Assimilating ocean observations leads to large error reduction in wind intensity forecast of Hurr. Michael: strong impacts of the ocean on the storm

• Other hurricanes investigated: Hurricane Gonzalo (2014), Hurricane Maria (2017)

• The correct representation of the ocean leads to reduced error in hurricane intensity forecasts, which is best achieved by assimilating a combination of observations (altimetry: mesoscale features, profilers: vertical structure, SST: mixed layer temperature and heat)